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A simple mathematical formalism is presented which allows narrow pulses. In particular, it is assumed that not only is the
closed form expressions for the echo attenuation, E (q ) , in spin duration d of the pulses much smaller than their separation
echo diffusion experiments, for practically all gradient waveforms D but that the distance diffused during the pulses is small
and for the case of restricted diffusion in enclosing pores, with compared with characteristic dimensions of the pore space
or without wall relaxation. The method, which derives from the morphology. Because the wave vector amplitude q depends
multiple propagator approach of A. Caprihan et al. (1996, J. on the time integral of the pulse, this restriction to narrow
Magn. Reson. A 118, 94) , depends on the representation of the

pulses represents a constraint on the maximum availablegradient waveform by a succession of sharp gradient impulses. It
scattering wave vector. Furthermore the need to ensure thatleads to E (q ) being expressed as a product of matrix operators
the diffusion distance is small during the pulses further con-corresponding quite naturally to the successive sandwich of phase
strains the distance scales which can be probed using thisevolution and Brownian migration events. Simple expressions are
experiment. In consequence it would be helpful to find agiven for the case of the finite width gradient pulse PGSE experi-
convenient mathematical treatment which is applicable toment, the CPMG pulse train used in frequency-domain modulated

gradient spin echo NMR, and the case of a sinusoidal waveform. the case of finite pulse durations. An additional reason to
The finite width gradient pulse PGSE and CPMG pulse trains consider such a treatment concerns applications where the
are evaluated for the case of restricted diffusion between parallel applied gradient is constant, for example, as in stray field
reflecting planes. The former results agree precisely with published experiments. Consequently a number of authors have re-
computer simulations while the latter calculation provides useful cently addressed the issue of q-space diffraction under condi-
insight regarding the spectral density approach to impeded tions of finite gradient pulse widths, both in qualitative terms
Brownian motion. q 1997 Academic Press

(14) and by means of computer simulation (6, 15) . A sig-
nificant and successful analytic treatment of the finite pulse
problem has been demonstrated by Caprihan et al. (16) .

INTRODUCTION The success of their method has acted as an encouragement
to simplify their approach, and to express the underlying

The pulsed gradient spin echo (PGSE) experiment (1) mathematics in a readily understandable formalism.
provides a means to encode the spin phase distribution for Before proceeding it is important to appreciate that there
translational motion in a manner which enables the echo exist other classes of experiments to which such a simple
attenuation to be used to elucidate particle dynamics. In formalism might be usefully applied, and in particular we
particular, for restricted particle motion it has been shown will seek to find a method which is applicable to general
(2) that the echo attenuation can be interpreted in terms of gradient waveforms. One obvious example to be considered
a scattering theory where the scattering wave vector, q , is is the case where the gradient pulse rise time is finite or
identified with the gradient pulse area. As a result the Fourier where the gradient coil is tuned to resonate in order to max-
spectrum of the confinement space appears explicitly in the imize the available gradient strength so that the relevant
measurement (3) , an effect which has been termed diffusive waveform shape is that of a sinusoid. And, quite apart from
diffraction (2, 4, 5) . This q-space diffraction approach has the two-gradient-pulse PGSE experiment, there has been a
been used by a number of authors (4–13) to examine mor- demonstration recently of a very different form of general-
phological characteristics at length scales smaller than those ized modulated gradient spin echo experiment in which a
which can normally be accessed using conventional NMR periodic gradient waveform is used. In these frequency do-
microscopy. main modulated gradient spin echo (FD-MGSE) measure-

One of the central problems in PGSE q-space diffraction ments (17, 18) , one samples molecular dynamics in the fre-
experiments concerns the reliance of the scattering formal- quency domain rather than in the time domain. For such a

class of experiments the waveform is designed so that theism on an approximation of the gradient waveform by two
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75SPIN ECHO ANALYSIS OF RESTRICTED DIFFUSION

time integral of the effective gradient has well-defined fre-
quency characteristics. The FD-MGSE method has been
shown to provide access to much shorter time scales than
that of the traditional two-pulse PGSE experiment.

The original theory for the FD-MGSE experiment was
developed by Stepisnik (19, 20) who used a translational
motion spectral density approach, directly analogous to the
measurement of rotation motion spectral density in T1 disper-
sion experiments. However this theory relies on a Gaussian
moment assumption, an unsatisfactory condition when the
motion is restricted. Recently, Stepisnik has extended his
original treatment to allow for the effects of restricted diffu-
sion (21) . It is the purpose of the present article to demon-
strate a very different but also completely general approach
to modulated gradient spin echo NMR which can work for
any gradient waveform and for any morphological character-
istics associated with restricted diffusion, with or without

FIG. 1. Representation of (a) a pulse sequence for a standard narrow
spin relaxation at boundary surfaces. As we shall show, the pulse, PGSE experiment and (b) an effective gradient waveform.
method of calculation is both simple and intuitive.

A number of historical formalisms are available (2) for
the interpretation of the echo amplitude when the molecular

where q Å (2p)01gGd, r(r) is the probability distributionmotion under consideration is unrestricted Brownian self-
of starting positions, and Ps (rÉr *, t) is the propagator whichdiffusion and the distribution of molecular displacements is
gives the probability that a spin starting at position r willinherently Gaussian. These include the random jump model
move to r * at a later time t . Quite apart from its intrinsicof Carr and Purcell (22, 23) , the Bloch–Torrey equation
Fourier transform properties, the further beauty of Eq. [1](24) , and the spectral density approach of Stepisnik (20)
lies in the property that the particle motion is separable fromreferred to in the previous paragraph. We shall however
the phase evolution behavior by virtue of the fact that detailsfocus on the method of propagators, first introduced by Stej-
of the motion reside entirely within the propagator. Thisskal (25) and used so successfully to explain diffusive dif-
propagator language is fundamental to statistical physics andfraction in the case of the narrow, two-pulse PGSE experi-
translates directly to other scattering experiment formalisms,ment. This propagator approach, which has been extended
for example, inelastic neutron scattering (2) .by Caprihan et al. so as to deal with multiple time steps

The narrow gradient pulse approximation which underpins(16) , will form the basis of the formalism to be developed
the impulse description of Eq. [1] depends on an assumptionin this paper.
both that d ! D and that in the case of particles constrained
to diffuse within a restricted region of dimension a , d !

IMPULSE-PROPAGATOR THEORY
a 2 /2D where D is the particle self-diffusion coefficient.

The basic pulse scheme for the two-pulse PGSE experi-
GENERALIZED GRADIENT WAVEFORMS AND

ment is shown in Fig. 1 where the gradient is applied as
STOCHASTIC MOTION—THE FREQUENCY DOMAIN

two narrow impulses of amplitude G , duration d, and time
separation D. Notice that in the case of generalized gradient Suppose we consider first the case where the particle mo-
and RF pulse trains, we shall find it convenient to speak of tion is simply isotropic unrestricted diffusion (D) under an
an effective gradient g( t) such that the effect of phase- effective gradient waveform g( t) . In that case the Bloch–
inverting 1807 RF pulses can be mimicked by simply using Torrey equation (24) implies that
gradient pulses of opposite sign (while the effect of 907 RF
pulses is to switch the gradient off) . The point is illustrated

E( t) Å expF0Dg 2 *
t

0
S*

t =

0

g( t 9)dt 9D2

dt *DG . [2]in the simplest possible sequence shown in Fig. 1.
For the two-impulse scheme, the normalized echo signal

is given by (2, 25)
This equation yields, in the case of the PGSE experiment
with two gradient pulses of finite duration, the well-known
Stejskal–Tanner formula (1)E(q) Å * * drdr *r(r)Ps (rÉr *, D)

1 exp( i2pqrr)exp(0i2pqrr *) , [1] E(q) Å exp(04p 2q 2D(D 0 d /3)) . [3]
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76 PAUL T. CALLAGHAN

In the alternative approach to the description of generalized flecting or partially absorbing walls. A satisfactory descrip-
tion of this type of behavior must be a goal of any theoreticalgradient waveforms given by Stepisnik (26) , the echo atten-

uation signal is expressed using a spectral density description treatment dealing with generalized gradient waveforms.
of motion. In particular it can be shown that the spectrum
of translational motion is sampled by relevant spectral com- RESTRICTED DIFFUSION AND THE NARROW PULSE
ponents of the time integral of the gradient waveform PGSE EXPERIMENT

The problem of restricted diffusion is easily handled inF( t) Å g *
t

0

g( t *)dt *. [4]
the simple two-impulse PGSE experiment, for which the
echo attenuation is given exactly by Eq. [1] . Indeed all the

If one allows the random particle migration to be described physics for the particular problem is contained within the
by a fluctuating velocity vis ( t) the diffusion tensor for the propagator, Ps (rÉr *, t) and the problem reduces, in effect
motion can be written as the spectral density of the ensem- to solving for this distribution. The differential equation gov-
ble-averaged velocity auto-correlation function, erning Ps (rÉr *, t) is Ficks’ law,

DÇ* 2Ps Å ÌPs /Ìt . [9]D(v) Å *
`

0`

1
2 »vis ( t *)vis (0) …exp( ivt *)dt *. [5]

This equation may be tackled via the standard eigenmode
Provided that the signal amplitude is measured at a time expansion (27)
such that F( t) Å 0 (the usual echo condition), one finds
that

Ps (rÉr *, t) Å ∑
`

nÅ0

exp(0lnt)un(r)u*n (r *) , [10]

E( t) Å expS0 1
p *

`

0

F(v)D(v)F(0v)dvD . [6]

where the un(r *) are an orthonormal set of solutions to
the Helmholtz equation parameterized by the eigenvalue ln .

The exponent simplifies, in the case of isotropic diffusion, They are further subject to the identity
to (1/p) *`

0
D(v)ÉF(v, t)É2dv where the general gradient

modulation spectrum, F(v) , is given by
d(r 0 r *) Å ∑

`

nÅ0

un(r)u*n (r *) . [11]

F(v) Å *
t

0

F( t *)exp( ivt *)dt *. [7]
Ps , thus constructed, satisfies the initial condition

Equation [6] depends on an assumption of a Gaussian distri-
Ps (rÉr *, 0) Å d(r 0 r *) . [12]bution of spin precession phases. Under the particular condi-

tion that the diffusion coefficient is frequency independent
The eigenvalues ln depend on the boundary condition for(unrestricted Brownian motion) then these equations are
the case of relaxing walls, namely (28)consistent with the Bloch–Torrey equation and reproduce

the Stejskal–Tanner result in the case of the two-gradient-
DnP .ÇPs / MPs Å 0, [13]pulse experiment.

In an earlier paper Callaghan and Stepisnik (17) showed
that a repetitive CPMG train of RF pulses with interspersed, where n̂ is the outward surface normal and M is the usual
equally spaced gradient pulses of duration d and amplitude wall relaxation parameter (28) . Using these relationships
g produces the nearly ideal frequency sampling function. Eq. [1] has been solved exactly in the case of molecules
Under this waveform the echo amplitude is sensitive to the diffusing within parallel planes, cylinders, and spheres, and
diffusion spectrum at the frequency 2p /T where T is the closed form expressions for these geometries have been de-
period of F( t) . The echo attenuation function after N periods rived (29–32) . What we now seek is a method by which
of the waveform is given by the language of the propagator may be generalized to handle

any gradient waveform, and not just the two-impulse experi-
E(NT ) É exp(01

2NTg 2G 2d 2D(2p /T )) . [8] ment depicted in Eq. [1] . One motivation for this approach
is to decouple the physics of the restricted diffusion from
that of the NMR pulse sequence employed. Ideally we wouldThe Gaussian phase assumption which lies at the heart of

the derivation of Eq. [6] is extremely delicate in the case like a general expression for the echo attenuation which
satisfies the following two conditions.where the particle motion is restricted by collision with re-
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77SPIN ECHO ANALYSIS OF RESTRICTED DIFFUSION

(i) The propagator description should be retained and the E Å * dr1 * dr2rrr* drN/1r(r1)exp( i2pq1rr1)
nature of the restricted diffusion should be embedded en-
tirely within the mathematical form of that propagator. 1 Ps (r1Ér2 , t)exp( i2pq2rr2)Ps (r2Ér3 , t)rrr

( ii ) The gradient waveform should appear within a closed
form expression in a natural and obvious manner, so that 1 exp( i2pqNrrN)Ps (rNÉrN/1 , t)
the time sequence of the waveform evolution is explicit. 1 exp( i2pqN/1rrN/1) . [15]

THE MULTIPLE PROPAGATOR APPROACH
Using Eq. [10] we find

Recently Caprihan et al. (16) postulated that the case of
restricted diffusion under general gradient waveforms could E Å * dr1 * dr2rrr* drN/1r(r1)exp( i2pq1rr1)
be handled by breaking the gradient pulse into successive
intervals and writing a propagator for each stage of the evolu- 1 ∑

k1

uk1
(r1)u*k1

(r2)exp(0lk1
t)exp( i2pq2rr2)

tion. Their general mathematical expression involved a mul-
tiple sum over a large number of independent terms, although

1 ∑
k2

uk2
(r2)u*k2

(r3)exp(0lk2
t)rrrthey were able to simplify this somewhat in the case of the

finite gradient pulse PGSE experiment. Here we adopt a
similar philosophy but our derivation differs from that pre- 1 exp( i2pqNrrN)rrN) ∑

kN

ukN
(rN)u*kN

(rN/1)
sented by Caprihan et al. in that we derive a much simpler,
and quite general, closed form expression, and we do so in

1 exp(0lkN
t)exp( i2pqN/1rrN/1) [16]a manner which demonstrates explicitly the succession of

spin phase evolutions at each step of the gradient waveform.
Å * dr1 * dr2rrr* drN/1r(r1)exp( i2pq1rr1)These evolutions are expressed in terms of a product of

matrix operators between which are sandwiched time evolu-
tion terms associated with the diffusive motion. Because of 1 ∑

k1k2rrrkN

uk1
(r1)u*k1

(r2)exp(0lk1
t)

the emergence of Mathematical Tools such as Matlab, and
Mathematica, the matrix product is trivial to evaluate and 1 exp( i2pq2rr2)uk2

(r2)u*k2
(r3)exp(0lk2

t)rrr
so the expression presented here provides a practical tool
for rapid computation. Furthermore the expression is so 1 exp( i2pqNrrN)ukN

(rN)u*kN
(rN/1)

straightforward that it can be immediately adapted to any
sequence by organizing the matrices as required. 1 exp(0lkN

t)exp( i2pqN/1rrN/1) [17]
In order to retain the language of propagators when deal-

Å ∑
k1k2rrrkN

Sk1
(q1)Rk1k1

Ak1k2
(q2)Rk2k2

Ak2k3
(q3)rrring with generalized gradient waveforms, the particulate

translational motion must be subdivided into a sequence of
discrete time intervals, with all spin phase evolution taking 1 RkN01kN01

AkN01kN
(qN)RkNkN

S*kN
(0qN/1) , [18]

place at well-defined times at the boundaries of those inter-
vals. In other words we will require the narrow pulse approx- where
imation of Eq. [1] to apply over each evolutionary step, if
not over the entire waveform duration. This means, in effect,

Sk(q) Å V 01/2 * dr uk(r)exp( i2pqrr) [19]that we must approximate the gradient waveform by a suc-
cession of impulses, such that the time integral function,

Rkk Å exp(0lkt) [20]F( t) , is represented by a stepwise progression. The basic
scheme is shown in Fig. 2. Suppose that we break the wave-

Akk =(q) Å * dr u*k (r)uk =(r)exp( i2pqrr) , [21]form into N time intervals t each bounded by impulses qn ,
qn/1 , etc. We may discretise the waveform amplitude g(nt)
into units of dimension gstep . At time nt the impulse will be and we note that the initial density, r(r1) , may be set to the
qnÅmnq where qÅ (2p)01gdgstep and mn is some positive or inverse of the pore volume (V ) provided that the eigenfunc-
negative integer, depending on the local magnitude and sign tions are appropriately normalized. We further note via Eq.
of g(nt) and given by [11] that

mn Å integ(g(nt)) /gstep . [14] Akk 0(qA / qB) Å ∑
k =

Akk =(qA)Ak =k 0(qB) , [22]

Thus we may write the echo amplitude at the end of the
sequence as from which we obtain the result that A(nq) Å A(q) n .
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78 PAUL T. CALLAGHAN

provided that we calculate just three matrices, R(t) , S(q) ,
and A(q) , where q is the smallest impulse used to digitize
the waveform.

EXAMPLES OF E(q) FOR DIFFERENT WAVEFORMS

We now demonstrate the application of Eq. [24] in a
number of cases of special interest.

( i ) Steady gradient spin echo. The effective gradient is
as shown in Fig. 3a. We break the waveform into 2N / 1
intervals and 2N / 2 impulses so that the total effective
scattering wave vector amplitude is qnet Å (N / 1)q , with

FIG. 2. Schematic decomposition of a generalized gradient waveform
into a sequence of equally time-separated impulses, each of whose magni-
tudes are expressed as integer multiples, mn , of the basic digitization unit,
gstep . From this train the succession of matrix operators may be written
directly, starting and finishing with the S row and column vectors. The
effect of the diffusive evolution is contained within the diagonal R matrices
while that of the phase evolutions is contained in the A matrices each of
which is raised to the power mn , the integer corresponding to the impulse
strength at the n th step. Negative gradients are represented by using the
Hermitian transpose of A . The entire sequence shown is indicated in the
matrix product below the diagram.

Hence we may write our echo attenuation scheme using
the simple matrix product

E Å S(q1)RA(q2)RA(q3)rrrRA(qN)RS †(0qN/1) .

[23]

It is the recognition of the matrix algebra inherent in Eqs.
[18] to [23] which represents the key simplifying step in
our formulation of the problem. Let us consider the case of
a waveform g( t) which begins and ends with zero amplitude
and which has zero time integral at the sampling time in
order to satisfy the echo condition. As shown in Fig. 2,
we represent this waveform by a series of equally spaced
impulses. While this may seem a rather crude approximation

FIG. 3. Schematic illustration of impulse decomposition of three differ-in the domain of g( t) , it provides a stepwise approximation
ent pulse sequences. The sequences are shown using a small number ofto the more important time-integral waveform, F( t) . Setting,
impulses simply for clarity. In practice one may calculate the echo attenua-

for convenience, the initial and final impulses to the mini- tion quite rapidly using on the order of 100 impulses. In each case the
mum value q (an unimportant requirement if N is sufficiently evolution matrix product corresponding to the sequence is shown above.

(a) The steady gradient spin echo (or pulsed gradient spin echo with d Ålarge) we find that
D) represented by a train of constant magnitude impulses, q . Note that D
Å (N / 1/2)t while the wave vector value corresponding to the area under

E Å S(q)R[A(q)]m2rrr the complete gradient pulse is qnet Å (N / 1)q . (b) Finite pulse width
PGSE experiment in which qnet Å (M / 1)q , D Å (N / 1

2)t, and d Å (M1 R[A(q)]mnrrrR[A(q)]mN RS †(0q) . [24]
/ 1

2)t. (b) CPMG PGSE sequence in which the time integral effective
gradient waveform, F( t) , oscillates as a square wave, thus sampling the
diffusional motion in the frequency domain.Thus we find that in general, any waveform may be handled,
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79SPIN ECHO ANALYSIS OF RESTRICTED DIFFUSION

the pulse spacing and pulse duration identical and given by nik (17) , has a square wave time-integral waveform with
period T Å 2t where t is the time evolution step interval.D Å (N / 1

2)t and d Å (N / 1
2)t respectively:

Here the final and initial impulses have equal sign so that
in this case the initial and final operators are respectivelyE Å S(q)[RA(q)]N[RA†(q)]NRS †(q) . [25]
S(q1) Å S(q) and S †(0q2N/2) Å S †(0q) .

( iv) Sinusoidal gradient train. This waveform can beNote that the final and initial impulses have opposite sign q
amplitudes so that for this case the initial and final vectors expressed by using by digitized envelope function expressed

by N impulses being integer multiples of gm at time spacingare respectively S(q1) Å S(q) , and S †(0q2N/2) Å S †(q) .
t and period Nt, and persisting for P cycles( ii ) Finite gradient pulse spin echo. The effective gra-

dient is as shown in Fig. 3b. In this case we break the entire
waveform into 2N / 1 intervals so that the total effective E Å S(q)[∏

N

mÅ1

RA(q)gm ]PRS †(q) , [31]
scattering wave vector amplitude is qnet Å (M / 1)q , with
D Å (N / 1

2)t and d Å (M / 1
2)t. Here we find that

where gmÅ integ(Gmsin(2pm/N)) and GmÅ integ(gmax/gstep).
E Å S(q)[RA(q)]MRN0M[RA†(q)]MRS †(q) . [26]

SYMBOLIC INTERPRETATION SCHEME AND
Note that in the narrow gradient pulse approximation M Å COMPUTATIONAL IMPLEMENTATION
0, and we have

The pattern for writing down the matrix product should
now be apparent. The product begins and ends with the SE Å S(q)RN/1S †(q) . [27]
row and column vectors while the interior of the product is
a sandwich of R and A matrix operators. The time evolutionFrom Eqs. [10] and [19] we see that this form is precisely
associated with diffusion is contained within R(t) whileconsistent with Eq. [1] . Furthermore Eq. [27] may be identi-
the phase evolution associated with the gradient impulse isfied as the sum
embedded in the A(q) matrix. However, both R and A de-
pend on the propagator characteristics through the eigen-

E Å ∑
`

kÅ0

ÉSk(q)É2exp(0lkD) , [28] function expansion. To obtain the echo attenuation expres-
sion one need simply subdivide the time sequence into a
large number of steps (e.g., 100), represent the gradientwhere Sk(q) is the spectral component of the phase factor,
waveform by an equally spaced impulse train, and then writeexp ( i2pqrr ) , expressed in the basis of eigenkets
down the time succession of matrix operators.{u*k (r)}, i.e.,

In each of the above examples, the S , A , and R matrices
are calculated from the eigenfunction expansion relevant to

exp( i2pqrr) Å ∑
`

kÅ0

Sk(q)u*k (r) . [29] the geometry at hand. We shall give an example of this
procedure below. This calculation, and the evaluation of the
matrix product can be performed very rapidly by means of

Equation [28] illustrates that the echo attenuation is given the matrix-handling package, Matlab. Indeed the speed of
by a superposition of damped structure factors relating to this software is such that Eqs. [24] to [28] represent effec-
differing harmonics of the basis set, a result also pointed out tively analytic closed form expressions which can be evalu-
by Stepisnik (21) . With increasing diffusion time the factors ated in seconds with just a few lines of Matlab code. For
from the higher harmonics disappear leaving the lowest order example, using Matlab on a Power Macintosh, E(q) at 50
term alone as D r ` . In this limit E reduces to ÉS0(q)É2 , different values of q can be evaluated in a few seconds using
the Fourier structure factor of the pore. up to 100 15 1 15 matrices in the product. As a consequence

( iii ) CPMG spin echo train. Consider the effective gra- the entire time interval can be quite finely subdivided and the
dient train shown in Fig. 3c. It comprises 2N impulses and validity of the assumptions behind the impulse-propagator
N periods of the gradient time integral waveform. This series formalism can be assured.
of impulses may be represented by the relation

Restricted Diffusion between Planes
E Å S(q)[RA†(q)A†(q)RA(q)A(q)]M

We now test the relationships derived above in three of
1 RA†(q)A†RS †(0q) , [30] the four examples, using as a platform the case of restricted

diffusion along the axis normal to two parallel reflecting
planes spaced by a distance a . To evaluate Eqs. [25] to [28]where M Å N 0 1. This train, which is slightly different

from that originally demonstrated by Callaghan and Stepis- for the case of restricted diffusion, we need to obtain the
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80 PAUL T. CALLAGHAN

matrix elements of S , R , and A using the fundamental eigen-
function expansion for the particular geometry under study.
The required dimension of these matrices will be determined
by the exponents of the elements of the R matrix, since we
wish the matrix elements sums to converge when multiplying
out the products. For k 1 k matrices the R matrix elements
will decay as exp(0k 2p 2Dt /a 2) . Provided k 2Dt /a 2 ) 1,
this condition should be reasonably satisfied, and we have
found 15 1 15 matrices sufficiently accurate for our pur-
poses.

For the planar boundary case, the eigenfunction solutions
with and without relaxation at the boundary are well known
(16, 29–32) . We shall consider the case of perfectly re-
flecting walls but we note that the extension to the partially
absorbing case is trivial. For reflecting wall at z Å 0, a we
have

u0 Å (1/a)1/2 [32a]

uk Å (2/a)1/2cos(kpz /a) k x 0 [32b]

S Å BS * [32c]

A Å C†A *C [32d]

R Å exp(0k 2p 2Dt /a 2) , [32e]

where B and C are diagonal matrices with B00 Å 1/a , Bkk

Å 21/2 /a for k x 0 and C00 Å (1/a)1/2 , Ckk Å (2/a)1/2 for
k x 0 and

S *k Å i2a exp( ipqa)(2pqa)cos(pqa) /

((2pqa)2 0 (kp)2) k x 0 odd

2a exp( ipqa)(2pqa)sin(pqa) /

((2pqa)2 0 (kp)2) k x 0 even [33]

and

FIG. 4. Comparison of the impulse-propagator theory with Monte Carlo
simulations of finite pulse width PGSE attenuation for the case of restrictedAkk = Å 1

2[S *
Ék0k =É / S *k/k =] . [34]

diffusion between parallel planes of spacing a . No parameters have been
adjusted and the comparison is absolute. The solid line shows the result

( i ) Finite gradient pulse spin echo, steady gradient, and calculated using Eq. [26] while the dots are the simulation data of Coy
impulse pair gradient. In order to verify our theory we and Callaghan (6) . The dashed curve in each case shows, for reference,

the theoretical attenuation for an infinitesimal width gradient pulse. (a–d)begin by taking Eq. [26], the result for the finite gradient
show the effect of varying the pulse width duration.pulse PGSE experiment. Computational evaluations of this

problem have been provided by Blees (15) , who found a
numerical solution to the magnetization diffusion equation
under the known boundary conditions, and independently by these with solid lines from the theory. First, we have calcu-

lated E(q) using Eq. [26] and under identical conditions toCoy and Callaghan (6, 33) using Monte Carlo simulation of
particle diffusion. A later Monte Carlo computer simulation those used in the Monte Carlo simulations of Coy and Cal-

laghan (6) , namely D Å 0.6 a 2 /D with d Å D /8, D /4,has also been carried out by Linse and Söderman (34) .
We now compare the results of the analytic theory with D /2 and the steady gradient case, d Å D. The comparison

is shown in Fig. 4 where the agreement is excellent. Asall three sets of numerical ‘‘data,’’ in each case using discrete
points taken from the published simulations and comparing required we also find that the infinitesimal gradient pulse
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81SPIN ECHO ANALYSIS OF RESTRICTED DIFFUSION

equation [27] agrees precisely with earlier published results
(32) . In Fig. 5 we compare the results of Eq. [26] with the
numerical results of Blees at DD /a 2 Å 0.25, 0.5, and 1.0,
at two different values of d, namely that corresponding to d
Å 0.5D, and the extreme limit of constant gradient, d Å D.
The infinitesimal gradient pulse limit is also shown. Note
that we have retained the differing logarithmic scales used
by Blees so that our results may be directly compared with
his plots.

It is apparent in Figs. 4 and 5 that the position of the first
minimum in E(q) moves to higher values of q as the pulse
duration is increased. This shift has been remarked on by a
number of authors (6, 14–16) and its physical origin can
be found in the narrowing in the effective well size by virtue
of collisions of molecules with the boundaries, a point which
has been nicely explained by Mitra and Halperin (14) . The
Blees and the Coy and Callaghan results for steady gradient
(d Å D) are completely consistent and exhibit diffraction
first minima at around qa É 2.1 for D Å 0.5 a 2 /D , qa É
2.5 for D Å 0.6a 2 /D , and qa É 3.3 for D Å a 2 /D . A
highly significant finding is that we verify, for the case of
the maximum pulse duration d Å D, the substantial shift of
the diffraction minimum as the diffusion length, DD /a 2 ,
increases, with no asymptotic limit being evident. This result
stands in contrast to the predictions of the approximate
‘‘structure waves discord’’ theory of Stepisnik (21, 35) .

Finally we show in Fig. 6 the comparison of the predic-
tions of Eq. [26] with the simulations by Linse and Söder-
man, for the cases DD /a 2 Å 0.2, 0.5, and 1.0. The parame-
ters used in Fig. 6 are identical to those used in their Fig.
4d, namely gG Å 40D /a 3 and 200D /a 3 . At first sight, the
Linse and Söderman simulation for D Å 0.5a 2 /D appears
very different from that shown in Refs. (6, 15) , since the
minimum occurs at qa É 1.5. However it must be appreci-
ated that these authors performed their analysis of E(q) by
keeping the gradient amplitude, G , constant and varying

FIG. 5. As described in the legend to Fig. 4 but the predictions of Eq.the duration of the gradient pulse. As a consequence their
[26] are compared absolutely with the data of Blees (15) (dots and

minimum corresponds to a point where d Å 0.47D. Both squares) . Unlike the Monte Carlo data shown in Fig. 4, the values of
Blees and Coy and Callaghan find qa É 1.5 for d Å 0.5D Blees were obtained by numerical solution to the magnetization diffusion

equation. Note the dramatic shift in diffraction minimum for d Å D as theso that all the numerical analyses which have been published
diffusion length is increased from (a) 0.25 to (c) 1.0. Note also that in (a)are quite consistent.
the ordinate scale is loge while in (b, c) it is log10 , in accordance withNote that in all the comparisons shown here there are no
those used originally in Ref. (15) .

adjustable parameters. The comparisons shown in Figs. 4,
5, and 6 are absolute. The excellent agreement of the predic-
tions of Eq. [26] with all three sets of simulations serves to the Caprihan et al. paper in the extreme simplicity of our

attenuation formula, as evident in Eq. [26], and in the com-illustrate the satisfactory nature of the analytic theory, while
at the same time emphasizing the consistency between the prehensive test of the result against all available simulations

and across the entire q range of the echo attenuation plots.three independent sets of numerical analyses.
We emphasize again that the multiple propagator ap- Figure 7a shows the results of echo attenuation calcula-

tions carried out for the steady gradient case (Eq. [25]) overproach was also used by Caprihan et al. to find echo attenua-
tions for the finite gradient pulse experiment. These authors a range of values of DD /a 2 from 0.1 to 0.01, this time

plotted as a conventional Stejskal–Tanner plot in recognitioncompared the position of the first E(q) minimum with that
found by Blees. While our fundamental methodology is de- of the Gaussian character of the echo attenuation at short

diffusion times. The plots asymptotically approach the freerived from that earlier work, our own result differs from
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diffusion limit of unity slope as DD /a 2 ! 1. At finite values
of D the reduced effective diffusion coefficient manifests
the boundary attenuation phenomenon outlined by Mitra and
co-workers (36) , in which a layer of fluid of thickness on
the order of (DD)1/2 has impeded diffusion.

( ii ) The effective wavevector for the finite gradient pulse.
Note that Eq. [28], when evaluated for the case of the paral-
lel plates, returns the long time limit single slit diffraction
result as required:

E Å ÉS0(q)É2 Å Zsin(pqa)
pqa Z2

. [35]

For a finite duration gradient pulse we can define an effective
scattering wavevector, qeff , such that the position of the dif-
fraction minimum is that given by a narrow pulse experiment
with this wavevector. In other words

S(q)[RA(q)]MRN0M[RA†(q)]MRS †(q)

Å S(qeff )RNeff S †(qeff ) , [36]

where Nefft is the effective sharp pulse separation, Deff .
In order to identify S(qeff ) we rewrite the left-hand side of
Eq. [36] as S(q)[RA(q)]MRLRNeff RL[RA†(q)]MRS †(q) ,
where L Å (N 0 M 0 Neff ) /2. Thus we find that

S(qeff ) É S(q)[RA(q)]MRL . [37]

Thus qeff and Deff are interdependent. We may however de-
fine qeff by taking the lowest order structure factor ÉS0(qeff )É2

where S0(qeff ) is the k Å 0 element of the vector,
S(q)[RA(q)]M . Note that in this limit, the term RL in Eq.
[37] has no influence, as is to be expected given that the
lowest order term corresponds to the long time limiting case
for two narrow gradient pulses. We have used the right-hand
side of Eq. [37] to generate lowest order structure factors
(diffraction patterns) for E over a wide range of finite width
gradient pulses at finite diffusion times and always find that
qeff , as defined by the first minimum of ÉS0(qeff )É2 , coin-
cides precisely with the position of the first minimum of E .

( iii ) CPMG spin echo train. We now consider a com-
pletely different pulse train for which there exists no known
solution for the echo attenuation under conditions of re-
stricted diffusion. This is the periodic train of Fig. 3c, the
basis of the FD-MGSE experiment of Callaghan and Stepis-

keeping the gradient amplitude constant (l, gG Å 40D /a 3 , and h, 200D /
a 3) . Again the diffusion length is varied from (a) 0.2 to (c) 1.0. The

FIG. 6. As described in the legend to Fig. 4 but in which the predictions reason that no dramatic shift in the diffraction minimum is apparent in (c)
of Eq. [26] are compared absolutely with the Monte Carlo simulations of is due to the fact that d is significantly less than D in this diagram. These
Linse and Soderman (34) . By contrast with the data shown in Figs. 4 and data are in fact completely consistent with those of Blees and of Coy and
5, the q values are changed by changing the duration of the gradient pulse, Callaghan.
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the formalism of this article, and we may calculate the re-
sulting echo signal for any number of pulses via Eq. [30].
Figure 7b shows the result of a series of calculations made
for N Å 100 for a range of values of Dt /a 2 , in which the
logarithm of the echo attenuation is plotted against q 2 . The
linearity of all these plots attests to Gaussian behavior over
all time scales. Such Gaussian behavior, despite the restric-
tion of free diffusion, results from the cumulative effect of
many small phase excursions and is a consequence of the
central limits theorem. Hence we may rewrite Eq. [38] to
define an apparent diffusion coefficient via

E(NT ) Å exp(04p 2q 2(2N / 1)Dappt) . [39]

As in the case of the steady gradient train the asymptotic
behavior is apparent, but this time governed by the Dt /a 2

criterion rather than the DD /a 2 criterion. The echo attenua-
tion experienced under this periodic waveform is also dra-
matically less than experienced in the steady gradient case
over the same total period, as is to be expected, given the
oscillatory behavior of the gradient time integral, F( t) . This
can be seen in Fig. 7 by noting that qnet Å q(N / 1) so that
the abscissa scales in Figs. 7a and 7b differ by a factor of
order N .

In Fig. 7b we see the effect of restricted diffusion over
the time scale t separating the pulses in the CPMG train.
Using these results for the E(q) along with Eq. [39], we
can calculate the apparent diffusion coefficient by linear re-
gression. For the smallest values, the value of Dapp /D re-
turned from a linear regression is around unity, but once
Dt /a 2 approaches 1, the apparent diffusion coefficient
drops. Figure 8 shows the normalized apparent diffusion
coefficient as a function of frequency, 1/2t. Because theFIG. 7. (a) Stejskal–Tanner echo attenuation plot for the finite width

PGSE experiment at small diffusion lengths where the data are approxi- gradient waveform samples the translational motion spectral
mately Gaussian. The asymptotic trend to free diffusion is apparent as the density so strongly at the fundamental frequency 1/2t, we
diffusion length decreases. Note that qnet Å q(N / 1). (b) Echo attenuation may view this graph as a measure of the diffusion spectrum
plot for the CPMG FD-MGSE experiment, plotted according to Eq. [39]

for this problem, and, as has been noted earlier (17, 18) ,so that the slope yields the ratio Dapp /D . By contrast with the two-pulse
because the waveform can easily be applied with spacingsPGSE experiment, the relevant diffusion length scale is determined by the

much shorter oscillation period, 2t, rather than the sequence duration. of less than 1 ms, we are able to probe this density up to
Again, the asymptotic trend to free diffusion is apparent as the diffusion kilohertz frequencies. The generalization of this approach to
length decreases, with the relevant time being the period T Å 2t, rather other problems involving particle dynamics represents an
than the total pulse train duration.

attractive outcome of the present model.

nik (17) . For unrestricted diffusion we can write down the CONCLUSION
expected echo attenuation very simply. A single pair of im-
pulses with wave vector q separated by t will contribute The analysis presented here provides a completely general
exp(04p 2q 2Dt) . For N periods of the waveform we have way to deal with the problem of restricted diffusion under
(2N / 1) pairs in succession, leading to any gradient waveform. Provided one can obtain an eigen-

function expansion for the propagator, the S , R , and A matri-
ces can be evaluated and solution for E(q) may be writtenE(NT ) Å exp(04p 2q 2(2N / 1)Dt) [38]
down directly. In the present work we have demonstrated
solutions for two different waveforms in the case of theThe interesting question concerns the behavior of the echo

attenuation under restricted diffusion as the pulse spacing t parallel plate restricted diffusion problem. Eigen-expansions
are also known for the spherical and cylindrical pore geome-is varied. This series of impulses is ideally represented by
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